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Abstract 

The closest packing of x circles on the surface of a sphere is calculated in the same 
way that the stereochemical arrangement of atoms around a central atom is determined. 
A number of improved packings have been discovered for x = 19 to 80. A notable 
feature is that the structures are generally of low symmetry. The packing density p, defined 
as the fraction of the spherical surface that is enclosed by the circles, increases only 
very slowly as the number of circles increases and the values remain substantially below 
that for a close packed plane, or for an octahedron or icosahedron. 

1. Introduction 

The determination of the closest packing of  circles on a plane is a trivial 
problem, but the closest packing of circles on the surface of  a sphere, or other 
curved surfaces, is more difficult to determine [1]. This problem arises in many 
different disciplines, but our interest originated in the arrangement of atoms around 
a central atom, or cluster of atoms. 

The problem is to determine the largest diameter that x equal circles may 
have when packed onto the surface of  a sphere of  radius r, without any overlapping 
of  the circles. Alternatively, i f  the centre of  each circle is considered as the vertex 
of  a polyhedron, the problem is to find the polyhedron that maximizes the shortest 
edge lengths. The closeness of packing can be expressed as the shortest edge length 
of  the polyhedron l, which is also the diameter of  the circles, or as the packing 
density p, which is defined as that fraction of  the surface of  the sphere that is 
enclosed by the circles. 

For x = 2 to 12 and for x = 24, there are geometric proofs of  the best solu- 
tions. Relatively high values of  the packing density are observed for the tetrahedron 
(x = 4, p = 0.845299), octahedron (x = 6, p = 0.878680), icosahedron (x = 12, 
p = 0.896095) and snub cube (x = 24, p = 0.861703). As x approaches infinity, p 
is expected to approach the value for a close packed plane, p = ~/(2~/3) = 0.906900. 

For most values of x, rigorous proofs of  the optimum packing are not available, 
and improved packings are discovered from time to time using a variety of  methods. 
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The best packings f o r x  = 2 to 40 known up to 1985 have been described previously 
[1]. An interesting result from that work is that values of  p varied widely, for 
example p = 0.814 to 0.861 fo rx  = 20 to 40, and any approach to the limiting value 
of  p = 0.906900 is obscured by this variation. The best known packings represent 
a great variety of structural types. For example, the polyhedra may have pentagonal, 
square or triangular faces, and each circle may be in contact with five, four or three 
other circles, or may be in contact with none and allowed to rattle in a hole formed 
by six or more circles. The structures are generally of  low symmetry,  although in 
some cases they may be derived from high-symmetry structures by small distortions. 
There is no discernable periodicity in symmetry properties or other structural features 
as x increases. 

For x > 40, the best values tor the packing in the literature have generally 
been obtained either by imposing some rotational symmetry on the structure, or by 
imposing very high tetrahedral, octahedral, or icosahedral symmetries,  as is often 
used in the construction of  geodesic domes. For these structures, the unexpected 
result is obtained that the value of the packing density p generally decreases as x 
increases. The most dense packing known for high values of x is for a structure of 
icosahedral symmetry  obtained for x = 360, but the value for p of  0.859447 [2] is 
still inferior to the values obtained for x = 6, 12, 24 or 48. The largest structure that 
has been studied is for x = 1080 of icosahedral symmetry,  for which p is even lower 
at 0.854149 [3]. 

In this paper, results are described for values o fx  up to 80 in which no symmetry 
is enforced. 

2. Method 

In our work, the problem is investigated by numerical techniques. If the 
distance between the polyhedral vertices i and j, or between the centres of the circles 
i and j, is dij, then the repulsive energy between these points is taken to be d/~ n, 
where n is some positive number. The total energy of  the system is then obtained 
by summing over all such interactions and minimization of  the total energy leads 
to the most favourable arrangement. If n = 1, there is a Coulombic interaction between 
the points, whereas the arrangement of atoms around a central atom is best modelled 
by n -  6. As n becomes larger, the energy becomes increasingly dominated by the 
terms corresponding to the shortest polyhedral edge length, and minimizing the 
total energy corresponds to maximizing the smallest edge length. As n approaches 
infinity, the problem becomes one of packing circles on the surface of  a sphere. In 
this work, the energy was minimized as n was progressively increased, usually up 
to a value of  6144. This generates an approximate polyhedron whose shortest edge 
lengths vary by only about 0.001 r, which is sufficient to establish the symmetry and 
connectivity of  the structure. Each of  these edge lengths is a function of  four 
angular coordinates: 

dij = [2 - 2 cos¢i COS~j- 2sin ~i sin ~bj cos (O/ -  Oj)]l/Zr. 
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In this work, the angular coordinates are defined relative to the "north pole" at 
---- 0 and the "longitude" is given by 0. If each of the distances is set equal to the 

edge length l of the exact polyhedron, a set of simultaneous equations is obtained 
which in simple cases is equal to the number of unknowns l, Oi, Oi, cpj, Oj . . . .  (for 
example, 2x - 2 unknowns for structures containing no symmetry elements). Solving 
these equations leads to the desired exact structure. In some cases, the minimization 
procedure leads to more than the required number of short edge lengths and all 
combinations of equations must be solved to determine the best packing. 

Sometimes, the energy minimization procedure yields an approximate structure 
in which some circles are not in contact with any of the surrounding circles. These 
circles and corresponding equations can be deleted from the set of equations to be 
solved and the circles reinserted later. 

Minimization techniques were variants of Fletcher-Powell-Davidon [4]. 
Equations were solved by Newton- Raphson methods with the approximate structure 
as the starting point. 

3. Results 

For values of x from 19- 80, a number of packing arrangements have been 
discovered that are an improvement on the best in the literature, and these are 
described in turn. A full listing of angular coordinates for all structures may be 
obtained from the authors and has also been deposited with the Editors. The modified 
F6ppl notation used here to describe structures with axial symmetry provides a list 
of the number of corners of the succession of planar polygons perpendicular to the 
principle axis; "a" signifies that the polygon is eclipsed relative to the polygon 
above it, "~" signifies a staggered arrangement, "a"  signifies an intermediate 
arrangement, "a n'' signifies a succession of n such polygons, "(a)" signifies that the 
polygon is irregular, and "2,, signifies half occupancy of two equivalent sites. For 2 
structures containing rattling circles, the angular coordinates, symmetry and F6ppl 
notation correspond to the circles being in the centres of their holes. 

x =  19 

The structure with five points irregularly arranged on a mirror plane and 
seven on each side as previously proposed [5], l = 0.808303r, can be improved [6] 
by choosing a slightly different set of short edges (by allowing 13 to rattle, and by 
including edges between 2 and 11 and the symmetry related 3 and 12, see fig. 1 
and table 1) to give I = 0.808558r. 

x = 2 1  

The best result in the literature is the D 3 structure, with l = 0.774344r [7]. 
We have found an improved structure containing no symmetry elements, with 
l = 0.775239r (fig. 2). 
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0 = 9 0  ° 

q~=0 ° 

0 = 0  ° 

Fig. 1. Packing for x = 19, viewed from ~ = 0 and ~ = 90 °, 
0 = 0. A mirror plane passes through 0 = 0, 180 °. 

0 = 9 0  ° 

Table 1 

Angular parameters (i degrees) for structure with x = 19 

Vertex 0 0 

1 0 - 

2 47.691914 55.770194 
4 47.691914 123.047331 
6 62.101913 0 
7 85.302713 156.068667 
9 87.688130 85.821687 

11 92.376778 38.347394 
13 125.154230 0 
14 120.368721 122.264027 
16 127.476486 180 
17 134.620587 63.450826 
19 175.16840o 180 

x = 2 2  

The  best  va lue  quoted  in the l i terature is incor rec t  [8]. Our  op t imiza t ion  
p rocedu re  p roduces  a s t ructure  which  to a first approx imat ion  can be cons ide red  to 
be based  on  a t e t rahedron  with one circle  at each  ver tex ,  one  above  each  edge ,  and 
an equi la te ra l  t r iangular  a r rangement  o f  three above  each  t r iangular  face,  wi th  
t r iangular  edges  parallel .  T h e  exact  s t ructure  (fig. 3 and table  2) is s igni f icant ly  

d is tor ted  f rom te t rahedra l  and contains  no s y m m e t r y  e lements .  An a lmost  ident ica l  
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¢p=O ° 

0=90° t 

O=O* 

Fig. 2. Packing for x = 21, viewed from ~ = 0 and ~ = 90 ° , 0 = O. 

e = 9 0 0  

tl:l ~ O ° 

0=0 o 

Fig. 3. Packing for x = 22, viewed from ~ = 0 and ~ = 90 °, 0 = 0. A pseudo-S 4 axis passes 
through ~ = 0, 180 °. Alternative sites for circles 1 and 2 are shown by broken lines. 

Table 2 

Angular parameters (in degrees) for structure with x = 22 

Vertex ¢ 0 

1 6.236991 90.000000 

3 44.394849 0 

7 50.173569 118.052241 

11 52.884727 59.975977 

15 82.449089 152.722749 

19 85.790424 19.459660 

e = 9 0  ° 
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structure has been found by Lazi6 et al. [6]. There are 42 edge lengths of  0.761175r, 
but rather remarkably the next four longer edges are identical, 0.790924r. These 
four edges are related by an S 4 axis through ~0 = 0, 180 °, as are all circles with the 
exception of  1 and 2. Circles 1 and 2 are displaced from this axis and have two 
alternative sites, 1, 1' and 2, 2' ,  which are related by the S 4 axis and are shown by 
the broken lines in fig. 3. It should be noted that 1 and 2 are not free to rattle, the 
two alternative sites forming rigid structures. Disorder of  this type is common in 
crystal structures where an atom, or group of  atoms, may occupy one of  two 
symmetry-related sites in the unit cell which, when summed over the entire crystal, 
leads to the observation of  partial occupancy of  each site, but this appears to be the 
only known case of  such "disorder" for the current problem of  packing circles on 
a sphere. 

x = 25 

The minimization of  the repulsion between points using our optimization 
procedures leads to a number of different structures, all of  which have relatively 
low packing densities. The best of  these contains a threefold axis and has also been 
obtained by Lazi6 et al. [6]: l = 0.710776r (fig. 4 and table 3). 

x =  26 

A reasonably good solution to packing 27 circles on a sphere is the D5h 
1351 structure of  Sz6kely [9], and our optimization procedure for x = 26 leads to 
structures that are superficially related but with one circle missing. There are a 
number of  valid structures that are similar and related to each other by a small 
reorganization of  the shortest edge lengths and those that are only 0 .1 -  0.5% longer. 
All structures contain at least one rattling circle. Our best solution is l = 0.700983r 
(fig. 5). A related structure has been obtained by Lazi6 [6]. 

x = 2 9  

The previous best result was obtained by removing one circle from the D 3 
x = 30 structure: l = 0.660981 r. We have obtained a better structure, l = 0.661981 r, 
that contains no symmetry,  but further improvements are likely [10]. 

x =  33 

The optimization procedure yields a structure which to a very good approximation 
has D 3 symmetry [11]. Based on this symmetry,  the (revised) angular coordinates 
are given in table 4. Kottwitz [12] 
by removal o f  the three twofold 
addition of  three new polyhedral 

has pointed out that this structure can be improved 
axes through ¢ = 90 °, 0 = 0, 60 °, 120 ° and the 
edges, 7 - 1 3 ,  8 - 1 4  and 9 - 1 5 .  These new edges 

indirectly pull the circles 1 to 9 down to increasing # and circles 25 to 33 up to 
decreasing ~ (fig. 6 and table 4). These changes also lift circles 16, 17 and 18 from 

= 90 ° to # = 89.996143 °, and the value of  l increases from 0.622257505r to 



Fig. 4. Packing for x = 25, viewed from ¢ = 0 and 
¢ = 90 °, 0 = 0. A C 3 axis passes through ¢ = 0, 180L 

Table 3 

Angular parameters (in degrees) for structure with x = 25 

Vertex ¢ 0 

1 0 - 

2 41.634461 0 

5 54.230207 54.827000 

8 77.056343 93.603622 

11 80.639519 17.310622 

14 95.844565 56.203937 

17 118.687162 93.034144 

20 122.077147 21.541143 

23 155.772121 62.368132 

q~=O ° 

0 = 9 0  ° 

II1=O ° 

0=90°  ~ 1 
O=O o 

0=O ° 

Fig. 5. Packing for x = 26, v iewed from ¢ = 0 and ¢ = 90", 0 = O. 

331 

6 = 9 0  ° 

0 = 9 0  
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Table 4 

Angular parameters (in degrees) for structure x = 33 

D 3 structure C 3 structure 
Vertex ~ 0 ~ 0 

1 21.054790 119.333347 21.054801 119.333475 

4 42.844974 59.333347 42.844996 59.333475 

7 56.317183 14.283276 56.317212 14.283398 

10 69.805143 89.229021 69.819919 89.206686 

13 77.523119 46.743999 77.494512 46.631326 

16 90.000000 0.000000 89.996143 - 0.010420 

19 (102.476881) (-  46.743999) 102.448482 - 46.856838 

22 (110.194857) (-  89.229021) 110.209214 - 89.251070 

25 (123.682817) (- 14.283276) 123.682788 - 14.283398 

28 (137.155026) (- 59.333347) 137.155004 - 59.333475 

31 (158.945210) (- 119.333347) 158.945199 - 119.333475 

0 = 9 0  ° 

¢p=O ° 

e=o  ° 

Fig. 6. Packing for x = 33, viewed from ~ = 0 and 
~=  90 °, 0= 0. A C a axis passes through ~= 0, 180 °. 

0 = 9 0  ° 

0.622257802r.  These changes are remarkably small. It is notable that circles 1 to 
9 are related to circles 25 to 33 by D 3 symmetry,  whereas circles 10 to 24 are related 
to each other by only C 3 symmetry. 

x = 4 1  

In this work, a structure with C 2 symmetry was obtained, l = 0.563219r,  which 
is an improvement  on the previous best structure with fivefold symmetry [9]: 
l = 0.562052r.  A value of  l = 0.563488r has recently been claimed, but no details 
are available [10]. 
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x = 4 3  

The structure obtained in this work contains no symmetry elements and has 
quite an irregular appearance (fig. 7), and further improvements are likely. 

~ = 0  ° 

\ 

0 = 9 0  ° j 

/ 

O=O ° 

Fig.  7. Pack ing  for  x = 43,  v i e w e d  f rom ¢) = 0 and # = 90% 0 = 0. 

0 = 9 0  ° 

x = 4 4  

For x = 44, a highly symmetric structure is available of  cubic symmetry.  A 
rhombic dodecahedron can be considered as an interpenetrating cube and octahedron. 
If the octahedral vertices are truncated to give a truncated rhombic dodecahedron, 
a 32-vertex figure is formed with six square faces and twelve hexagonal faces; 
capping the latter produces a capped truncated rhombic dodecahedron, l = 0.549275 r. 
Circles at the capping sites are free to rattle, and the packing can be improved to 
l = 0.550610r by twisting about one of  the fourfold axes, as shown by Karabinta 
and Sz6kely [7]. A further improvement was found in this work, to l = 0.550873r. 
The structure is given in fig. 8. The structure has D4 symmetry,  but the four circles 
on the twofold axes are free to rattle and further improvements with a lowering of  
symmetry  may be possible. The packing density of p = 0.850977 is only exceeded, 
for structures of  lower x, for the octahedron, icosahedron and snub cube. 

x = 4 5  

In the literature, the best packing is the structure with fourfold symmet ry  
found by Sz6kely: l = 0.538257r. The structure in this work contains no symmetry  
elements and has a substantially larger edge length, 1 = 0.539493r (fig. 9). 

x = 4 6  

The structure found contains a twofold axis, l = 0.532147r (fig. 10). 
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0=0 ° 

0 = 9 0  ° 

(p~O ° 

0 = 9 0  ° 

Fig. 8. Packing for x = 44, viewed from # = 0 and ~ = 90% 
0= 0. A fourfold axis passes through O= 0, 180 ° and twofold 
axes through 0 = 90% 0 = 0, 90 °, 180 °, 270 °. 

Q=O ° 

/ 

"~ 0 = 9 0 °  

0 = 0  ° 

0 = 9 0  ° 

Fig. 9. Packing for x = 45, viewed 
from ¢ = O a n d O  = 9 0 °  , 0 = 0 -  



B.W. Clare, D.L. Kepert, Optimal packing of circles 335 

1~=0 ° 

0 = 0  o 

Fig. 10. Packing for x = 46, v i ewed  f rom ~ = 0 and 

= 90 °, 0 = 0. A C 2 axis passes  through O = 0, 180 °. 

0 = 9 0  ° 

x = 4 7  

The optimization procedure yielded a structure with a moderately high packing 
density, l = 0.53076r, p = 0.84262. Repeated attempts to select 92 edge lengths to 
solve for the 92 unknowns were, however, unsuccessful. It is commonly found that 
when the value of x is one less than a number producing a particularly favourable 
packing, as in this case where the packing for x = 48 is particularly good, then the 
structure approximates to the latter but with one circle missing, which tend to be 
very nonrigid structures for which the optimization procedures do not converge 
very well. Other examples of this behaviour are for x = 5, 11, 23, 31 and 42. 

x = 4 8  

The structure obtained from the optimization procedure had octahedral O 
symmetry, with the three fourfold axes, four threefold axes and six twofold axes 
of the regular octahedron, but without the mirror planes and centre of symmetry. 
The structure can be considered as a "snub cuboctahedron" and has the six square 
faces and eight equilateral triangular faces of the cuboctahedron, with an additional 
two equilateral triangles linking these squares and triangles along each of the 24 
edges of the cuboctahedron. The snubbing of a non-regular polyhedron produces 
non-regular polygons at each vertex of the polyhedron, which in the case of the 
cuboctahedron are diamonds, or more correctly, pairs of isosceles triangles. The 
structure is given in fig. 11 and table 5, and has been described by Robinson [13]. 
There are 120 edge lengths of 0.530486r with five edges meeting at each vertex, 
and a further 12 edges of  0.645437r. The packing density of p = 0.859642 is bettered 
only by the octahedron, icosahedron and snub cube for structures with fewer than 
48 circles. 



q~=O ° 

0 = 9 0  ° 
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0=O ° 

Fig. 11. Packing for x = 4 8 ,  viewed from # =  0 and ~ =  90 ° , 
0 = 0. The structure has octahedral O symmetry, with fourfold axes 
passing through ~ = 0, 180 °, and ~ = 90 °, 0 = 0, 90 °, 180 °, 270 °. 

0 = 9 0  ° 

Table 5 

Angular parameters (in degrees) for structure with x = 48 

Vertex ~ 0 

1 22.031128 72.093037 

2 42.941549 27.093037 

x = 4 9  

T h e  s t r u c t u r e  o b t a i n e d  in t h i s  w o r k  c o n t a i n s  n o  s y m m e t r y  e l e m e n t s  a n d  is 

s h o w n  in  f ig .  12. 

q~=o o 

0 = 9 0  ° 0 = 9 0 0  

0_.--0 o 

Fig. 12. Packing for x = 49, viewed from # = 0 and ~ = 90 ° , 0 = 0. 
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T h e  b e s t  p a c k e d  s t r u c t u r e  d e s c r i b e d  in  the  l i t e r a t u r e  h a s  f i v e f o l d  s y m m e t r y  

w i t h  l = 0 . 5 0 1 7 2 3 r  [9].  O u r  m e t h o d  p r o d u c e d  a b e t t e r  s t r u c t u r e  w i t h  t h r e e f o l d  

s y m m e t r y ,  l = 0 . 5 0 3 5 7 7 r  ( f ig .  13). 

Q = O  ° 

0=0 ° 

0 = 9 0  ° 

0 = 9 0  ° 

Fig. 13. Packing for x = 52, viewed from ~ = 0 and 
= 90 °, 0 = 0. A C 3 axis passes through ¢ = 0, 180 °. 

9 = 9 0  ° 

X =  53 

T h e  p r e v i o u s  b e s t  s t r u c t u r e  h a s  f o u r f o l d  s y m m e t r y  and  l = 0 . 4 9 0 8 6 7 r  [9].  In  

th i s  w o r k ,  a s t r u c t u r e  w i t h  no  s y m m e t r y  w a s  o b t a i n e d  w i t h  l = 0 . 4 9 5 9 8 6 r  ( f ig .  14).  

i 
8=0 o 

cp=O ° 
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Fig. 14. Packing for x = 53, viewed from ¢ = 0 and ~ = 90% 0 = 0. 

O = 9 0  ° 
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The structure obtained in this work contains a twofold axis (fig. 15). The 
edge length of  0.495259r is an improvement on 0.488512r for a structure of  fourfold 
symmetry described in the literature [9]. 

~ = 0  ° 

0 = 9 0  ° 
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0 = 0  ° 

Fig. 15, P ack i ng  for x = 54, v i ewed  f rom ~ = 0 and  

= 90% 0 = 0, A C 2 axis  p a s s e s  t h rough  ~0 = 0, 180 °. 

0 = 9 0  ° 

x = 5 5  

The previous best result was for a structure of fivefold symmetry, l = 0.480723r 
[9]. We have obtained a better structure that contains no symmetry, l = 0.488077r.  
A value of  l =  0.488285r has recently been claimed, but no details are avail- 
able [ 10]. 

x =  56 

The previous best structure has sixfold symmetry and l = 0.480307r  [9]. A 
structure with D 2 symmetry was found in this work, l = 0.486351 r (fig. 16 and table 
6). The four symmetry-related circles 5, 6, 7 and 8 rattle. 

x =  57 

The structure obtained in this work is closely related to one containing a 
twofold axis with l = 0.479818r;  this structure contains two pairs of  rattlers, and 
the structure can be slightly improved to l = 0.479905r by collapsing around one 
of  them (fig. 17). This structure remains fairly flexible and further improvements 
may be possible. 
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Q = O  ° 

6 = 9 0  ° 

6 = 0  ° 

Fig. 16. Packing for x = 56, viewed from ~ = 0 and ~ = 90 °, 0 = 0. Twofold  
axes pass through q~ = 0, 180°; ¢ = 90 °, 0 = 0, 180°; ~0 = 90 °, 0 = 90 °, 270% 

0 = 9 0  ° 

Table 6 

Angular parameters (in degrees) for structure with x = 56 

Vertex ~ 0 

1 14.074023 74.660274 

5 25.157948 166.088130 

9 37.565526 155.080655 

13 39.006288 41.398104 

17 50.513237 78.467558 

21 51.204848 5.002105 

25 52.795527 149.108034 

29 65.499953 119.636314 

33 67.023832 44.884125 

37 75.203575 168.291463 

41 76.054584 91.917397 

45 77.183320 17.224854 

49 84.521122 141.246264 

53 86.809745 65.564717 



~ = 0  ° 

0 = 9 0  ° 
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0 = 0  ° 

Fig.  17. P a c k i n g  for x = 57,  v i e w e d  f rom ~ = 0 and  ~ = 90  ° , 0 = 0. 

0 = 9 0  ° 

x = 5 9  

The most close-packed structure previously found for x = 59 was the same 
as for x = 60 but with one circle missing. The structure obtained from our method 
has an edge length of  0.473591r, which is an improvement on the x = 60 structure 
(fig. 18). 

t l ~ O  ° 

0 = 9 0  ° 

0 = 0  ° 

Fig.  18. P a c k i n g  for x = 59,  v i e w e d  f rom # = 0 and  ¢ = 90  °, 0 = 0. 

0 = 9 0  ° 

x =  60 

Chemical interest in the structure of  60-atom clusters originates from the 
observation of  the C60 molecule in the gas phase, detected as an intense peak in the 
mass spectrum of  graphite vaporized by a laser pulse [14 -16] .  
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There are a number of highly symmetrical polyhedra with 60 vertices, in 
which all vertices are identical. In addition to the trivial cases of the prism and 
antiprism formed from two 30-sided polygons, there are the truncated dodecahedron, 
the truncated icosahedron, the rhombicosidodecahedron, and the snub dodecahedron 
(which is the same as the snub icosahedron). 

The truncated dodecahedron is composed of twelve decagonal and twenty 
triangular faces. The structure has the full I h symmetry of the dodecahedron and 
icosahedron. The structure is not very close-packed, with only three edges meeting 
at each vertex, I = 0.336763r. 

The truncated icosahedron has twenty hexagonal and twelve pentagonal faces, 
and again full I h symmetry. There are again only three edges meeting at each vertex, 
but these are substantially longer at l = 0.403548r than for the truncated dodecahedron. 
This is the structure that has been proposed for the C6o molecule, or Buckminster- 
fullerene. 

The rhombicosidodecahedron has twelve pentagonal faces, thirty square faces 
and twenty triangular faces, and retains I h symmetry. There are now four edges 
meeting at each vertex and the edge lengths are substantially longer than for the 
above two polyhedra, l = 0.447838r. The rhombicosidodecahedron contains pentagonal 
cupola units consisting of a pentagon surrounded by five squares and five triangles, 
and one or more of the pentagonal cupolas can be rotated by 36 ° to give a Csv gyrate 
rhombicosidodecahedron, a Dsd para-gyrate rhombicosidodecahedron, a C2v meta- 
bigyrate rhombicosidodecahedron, or a C3v trigyrate rhombicosidodecahedron, in 
which the vertices are no longer identical but the edge lengths remain unchanged. 

The snub dodecahedron has twelve pentagonal faces and eighty triangular 
faces. The six fivefold axes, ten threefold axes and fifteen twofold axes of the 
dodecahedron and icosahedron are retained, but the fifteen mirror planes are lost 
and the symmetry reduced to I. The edge length is longer than for the above 
structures, l = 0.463859r. 

The snub dodecahedron is a member of the series of structures which have 
five edges meeting at each vertex, all of which are identical [13]. The smaller 
members of this series, the icosahedron for x = 12, the snub cube for x = 24 and 
the "snub cuboctahedron" for x = 48, are the best packings that are known for these 
values of x. It has been shown, however, for x = 60 the structure can be improved 
to l = 0.467068r if the symmetry is lowered to C3 [9]. 

Our calculations yield a structure of D3d symmetry with a further improvement 
in packing, l = 0.469826r, p = 0.839510 (fig. 19 and table 7). 

The remaining case of the series of structures with five edges meeting at each 
vertex is for x = 120 [13], but our optimized structure is again an improvement. 

x = 6 1  t o 8 0  

The results obtained from the optimization of the repulsion energies are 
indicated in table 8. Only the value of the shortest edge length is given, and all 
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! 
0 = 0  ° 

(l~----O ° 

0 = 9 0  ° 

Fig. 19. Packing for x = 60, viewed from ¢ = 0 and ¢ = 90°, 

0 = 0. A threefold axis passes  through ¢ = 0, 180 ° and twofold 

axes  through ¢ = 90°, 0 = 0, 60 ° , 120 ° , 180 ° , 240 ° , 300 ° • 

0 = 9 0  ° 

Table  7 

Angula r  parameters  (in degrees)  for s t ructure  with x = 60 

Vertex ¢ 0 

1 15.738927 110.945871 

7 32.007533 51.665997 

13 41.835673 8 .495532 

19 46.148978 89.430596 

25 58.743683 58.747333 

31 64.136761 28.320394 

37 66.874697 115.221523 

43 73.248271 87.068228 

49 83.917516 47 .828096 

55 87.364685 13.648270 

values are capable of improvement (the analytic solution for the edge length is 
usually about 0.0001r longer than the minimum edge length obtained in the 
optimization). The edge lengths in table 8 are all longer than the best values in the 
literature, which are for structures of high symmetry [2, 17, 18]. With the exception 
of  the structure for x = 72, all structures obtained in this work appear to be of  low 
symmetry. Analytic solutions were obtained only for x = 61, 65, 72 and 74. 
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Table 8 

Best packings obtained from energy optimization 

X l(r) p 

61 0.46356 0.83058 

62 0.46045 0.83278 

63 0.45722 0.83417 

64 0.45289 0.83124 

65 0.45073 0.83610 

66 0.44892 0.84205 

67 0.44420 0.83671 

68 0.43996 0.83287 

69 0.43828 0.83857 

70 0.43509 0.83824 

71 0.43244 0.83977 

72 0.43156 0.84810 

73 0.42437 0.83112 

74 0.42169 0.83178 

75 0.41962 0.83467 

76 0.41670 0.83393 

77 0.41556 0.84025 

78 0.41312 0.84107 

79 0.40869 0.83348 

80 0.40748 0.83899 

The packing density for the structure with 72 circles is greater than for any 
of the structures above x = 48. The structure has D3~ t symmetry, and the details 
given in fig. 20 and table 9. Figure 21(b) shows the relationship to the snub 
dodecahedron, the reduction in symmetry from I to D3d leading to an increase in 
edge length from 0.430148r to 0.431609r. 



0 = 9 0  ° 

0 = 0  ° 

¢p=O ° 

Q = O  ° 

0 = 9 0  ° 

0 = 9 0  ° 
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0 = 0  ° 

0 = 9 0  ° 

Fig. 20. Packing for x = 72, viewed from 0 = 0 
and 0 = 90% 0 = 0. A threefold axis passes through 
0 = 0 ,  180 ° and twofold axes through 0 = 9 0  °, 
0 = 0, 60% 120 °, 180 °, 240 °, 300 °. The lower 
figures show the relation to the dodecacapped 
snub dodecahedron; the capping circles are hatched. 
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Table 9 

Angular parameters (in degrees) for structure with x = 72 

Vertex ~ 0 

1 14.429573 0.507154 

7 33.239759 45.345849 

13 36.312734 89.498418 

19 43.089457 7.589568 

25 54.403137 64.896854 

31 57.086044 34.797258 

37 59.377690 103.071935 

43 67.973011 9.377054 

49 74.489949 81.409992 

55 78.179031 56.023866 

61 81.757485 30.962961 

67 83.613316 109.275820 

4. Discussion 

The best packings of  x circles on a sphere that are currently known are 
summarized in table 8 (values obtained from the optimization of  the repulsion 
energy) and table 10 (exact solutions). The packing density p as a function o f x  is 
shown in fig. 21. It must be remembered that these results should be considered 
only as lower limits and further improvements will be found from time to time. The 
results are sufficiently reliable, however, to allow the following conclusions: 

(1) The large fluctuations in the value of  the packing density as a function of  x 
that are evident at low values of  x have substantially diminished and have 
settled down to values within the range p = 0.83 and 0.85. 

(2) In contrast to previous work, there is now a slight upward trend in the packing 
density as the number of circles increases. The slope of  p/x of 0.0001 to 0.0002 
indicates that packings as dense as that of an icosahedron may not be reached 
until there are many hundreds of  circles on the sphere. A preliminary calculation 
for x = 200 using our techniques has indicated l ~ 0.2583r corresponding 
to p - 0.838, which is not a particularly high value. 

(3) Particularly favourable close-packed arrangements are found for the tetrahedron 
(x = 4), octahedron (x = 6), icosahedron (x = 12), snub cube (x = 24) and snub 
cuboctahedron (x = 48). However,  high symmetry is not a condition for good 
close packing since there are a number of  structures that have been described 
with tetrahedral, octahedral and icosahedral symmetry, for example, for 
x = 30, 36, 54, 60, 72 and 78 [2,3, 17, 18] that are not as close-packed as the 
lower symmetry structures found in this work. 
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Table 10 

The best packings of circles on a sphere 

x Symmetry F6ppl notation l(r) p Ref. 

3 D3h 3 
4 T d 13 
5 C4, , 14 
6 O h 141 

7 C3, , 135 
8 D,~ 44  

9 D3h 332 
10 Czv 2(4-)2 2 

11 C5~ 155 
12 I h 1551 
13 C4~ 1442 
14 D2d 1 (4)22(4 -) 1 
15 C 3 3 3 ~'2~- 
16 D~ 443 

17 C2, 1 (4)'22(4)22 
18 C 2 22"27 

19 C s - 
20 D3h 133(6)321 

21 C 1 - 

22 pseudo-S 4 2"~'~92 Zz, z, 2" 

23 C I - 

24 O 4- 42442 
25 C 3 13 "~7 

26 C 1 - 
27 C2, , 1 (4)22(~)2(2;)(4)22 

28 C, - 

29 C x - 

30 D 3 3 -~ ~'7~- 

31 C 5 1552"552 
32 D 3 13 3"~731 

33 C 3 33 3g3 
34 C 2 2 2  "~14~ 

35 C 1 - 
36 D 2 222152 

37 C 1 - 
38 D6d 16651 

39 C 2 1(4)22~142 
40 C 3 133 (6)-32(6-)'3"333 

1.732051 0.750000 
1.632993 0.845299 
1.414214 0.732233 
1.414214 0.878680 

1.256870 0.777483 
1.215563 0.823582 
1.154701 0.825765 
1.091426 0.810140 
1.051462 0.821421 
1.051462 0.896095 

0.956414 0.791393 
0.933863 0.809946 
0.902656 0.807314 
0.880574 0.817143 
0.862445 0.830912 

0.838217 0.828575 

0.808558 0.810961 
0.804392 0.844463 
0.775239 0.820896 

0.761175 0.827806 

0.744496 0.826468 
0.744517 0.826516 
0.744206 0.861703 
0.710776 0.816014 
0.700983 0.824643 
0.695141 0.841674 
0.672110 0.814206 

0.661981 0.817306 
0.662797 0.819383 

0.660981 0.842861 
0.646346 0.831731 
0.642469 0.848006 
0.622258 0.818933 

0.614714 0.822896 
0.606437 0.823883 

0.604483 0.841834 

0.589685 0.822400 
0.588926 0.842404 

0.575098 0.823563 
0.570680 0.831473 

[1] 
[1] 
[1] 
[1] 
[1] 
[1] 
[1] 
[1] 
[1] 

[1] 

[11 
[11 
[1] 

[11 
[18] 
[18] 
[6] [This work] 

[19] 
[This work] 

[This work] 

[20] 
[lOl 
[21] 
[6] [This work] 
[This work] 
[18] 
[1] 
[This work] 

[lO] 
[1] 
[191 
[181 
[12] [This work] 

[1] 

[1] 

[1] 
[1] 

[91 
[1] 

[1] . . .  continued 
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Table 10 (continued) 

x Symmetry F6ppl notation l(r) p ReL 

41 C 2 12~182 0.563219 0.829653 [This work] 

- - 0.563488 0.830463 [10] 
42 D s 15 5 5"5 51 0.559765 0.839281 [9] 

43 C 1 - 0.552622 0.837933 [This work] 
44 D 4 4 ~~[s~- 0.550873 0.850977 [This work] 

45 C 1 - 0.539493 0.834044 [This work] 

46 C 2 2 ~'~21 0.532147 0.829086 [This work] 

47 C: - 0.53076 0.84262 [This work] 
48 O 4 ~ 9 ~  0.530486 0.859642 [13] 

49 C 1 - 0.515905 0.829139 [This work] 
50 D 6 16 -6~"63 621 0.513472 0.837961 [9] 

51 C 5 15 "~7~2 0.505892 0.829249 [9] 

52 C 3 13 3 5:5 0.503577 0.837660 [This work] 

53 C 1 - 0.495986 0.827811 [This work] 
54 C 2 2 2"~25 0.495259 0.840920 [This work] 

55 C 1 - 0.488077 0.831449 [This work] 

- - 0.488285 0.832169 [10] 

56 D 2 2 ~'~25~ 0.486351 0.840494 [This work] 

57 C: - 0.479904 0.832638 [This work] 
58 D 7 17 72"73 i f 2 1  0.476143 0.833817 [9] 

59 C 1 - 0.473591 0.838994 [This work] 

60 D3d 3 "~19 0.469826 0.839510 [This work] 

61 C 1 - 0.463620 0.830787 [This work] 

65 C 1 - 0.450806 0.836366 [This work] 
72 D3d 3 "~Z3 0.431609 0.848284 [This work] 
74 C 1 - 0.421747 0.832005 [This work] 

(4) In some cases, the closest packed structures are superficially related to structures 
of  higher symmetry. Examples include the D 2 s tructure  for x = 32 which is 
related to the rhombic triacontahedron (or an icosahedron with all faces 
capped), the D4d structure for x = 44 which is related to a truncated rhombic 
dodecahedron, and the D3d structure for x = 72 which is based on a dodecacapped 
snub dodecahedron. In the latter case, the structure for x = 72 based on 
dodecahedral symmetry has shorter edge lengths than one based on octahedral 
symmetry [2], but when the packing of  both are improved by a lowering 
of  symmetry, the order is reversed and the distorted capped snub dodeca- 
hedron now has the longer edges, again demonstrating that the high symmetry 
structures are not a reliable guide for the most favourably packed structures. 
It is probable that many of  the high symmetry structures that have been 
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Fig. 21. Packing density p as a function of the number of circles x, for 
the best closest packings of circles on the surface of a sphere. The broken 
line indicates the value for an infinite number of circles, p = 0.906900. 

I I 
8 0  

(5) 

for a 

described [2,3,17,18] for x = 120, 132, 180, 270, 360, 480, 750 and 1080 
(p = 0.846 to 0.861) are capable of  improvement. 

There is no obvious correlation between the type of structure observed and 
the number of  circles. For example, structures are known with no rotational 
symmetry as well as with twofold, threefold, fourfold, fivefold, sixfold and 
even sevenfold symmetry, but their occurrence is not a simple function of  x. 
One feature of  possible significance is the rarity of structures containing a 
mirror plane for x > 20, and these can exist as pairs of  optical isomers. Likewise, 
there is no apparent pattern for other structural features, such as the coordination 
number or degree of  connectivity between a circle and its neighbours, or the 
number and type of  faccs of  the polyhedron. 

It is clearly not possible at this stage to predict the most close-packed structure 
given value of  x. 
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